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In brief

Analyzing 3D epithelia at the cell level

becomes challenging when dealing with

hundreds of samples without a training

dataset. Andrés-San Román et al.

introduce CartoCell, a deep-learning

pipeline that employs a small annotated

dataset to achieve high-content cyst

segmentation coupled with detailed

analysis and cartography of cell features.
ll

mailto:pgg@mrc-lmb.cam.ac.uk
mailto:ignacio.arganda@ehu.eus
mailto:lmescudero-ibis@us.es
https://doi.org/10.1016/j.crmeth.2023.100597


Please cite this article in press as: Andrés-San Román et al., CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns
in epithelia, Cell Reports Methods (2023), https://doi.org/10.1016/j.crmeth.2023.100597

OPEN ACCESS

ll
Article

CartoCell, a high-content pipeline for 3D image
analysis, unveils cell morphology
patterns in epithelia
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MOTIVATION Amajor bottleneck in developing neural networks for cell segmentation is the need for labor-
intensive manual curation to develop a training dataset. The present work addresses this limitation by
developing an automated image-analysis pipeline that utilizes small datasets to generate accurate labels
of cells in complex 3D epithelial contexts. The overall goal is to provide an automatic and feasible method
to achieve high-quality epithelial reconstructions and to enable high-content analysis of morphological fea-
tures, which can improve our understanding of how these tissues self-organize.
SUMMARY
Decades of research have not yet fully explained themechanisms of epithelial self-organization and 3D pack-
ing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function
of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is
essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline
that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method
detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue.
CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell
cartography approach then maps the distribution of these features on 2D plots and 3D surface maps,
revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted
to other types of epithelial tissues.
INTRODUCTION

Analysis of epithelial tissue properties at the cellular level has

enabled advancement in the understanding of different cellular
Cell Rep
This is an open access article under the CC BY-N
phenomena during morphogenesis. Traditionally, most ap-

proaches were based on two-dimensional (2D) analysis of the

apical surfaces of monolayer epithelia. However, the need to

understand the 3D morphology of epithelial cells to study
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organogenesis,1–4 cell migration,5 branching formation,6 tumor-

igenesis,7 or wound healing8 has become evident in recent

years. A major breakthrough was the discovery that epithelial

cells can present very complex geometries due to the exchange

of neighbors along the apico-basal axis. These cell shapes have

been called scutoids, and it has been shown that they have a role

in morphogenesis as well as in the connectivity and biophysical

properties of tissues, cushioning andminimizing cell surface ten-

sion and leading to a balanced energetic state.9–16 Scutoids

represent a new paradigm, but they set a challenge for the quan-

titative analysis of the complex epithelial 3D packing requiring a

very accurate reconstruction of 3D epithelial tissues from micro-

scopy images to allow the capture of precise cell shapes and

neighboring relationships.

In the last few years, deep learning has become the state-of-

the-art solution for the analysis of biomedical images.17–19

Deep learning is a subdomain of machine learning that makes

use of large (or so-called deep) artificial neural networks to solve

a wide variety of tasks. As opposed to conventional algorithms,

before they can be used, deep-learning methods (or models)

need to be ‘‘trained.’’ In other words, models can ‘‘learn’’ from

a set of examples how to solve a specific task. Once trained,

the models can be directly applied to new samples, usually

called prediction or ‘‘inference.’’ In the particular case of image

segmentation, the training dataset is commonly formed by a

set of raw images and their corresponding ground-truth annota-

tions or ‘‘labels.’’ This type of learning framework, with both raw

and label images available, is known as supervised learning.

Furthermore, realistic 3D reconstruction of epithelial cells re-

quires assigning each individual cell a unique label, in a process

called ‘‘instance segmentation.’’

The 3D instance segmentation of microscopy data is a difficult

task, especially in the presence of a dense concentration of cells

and anisotropic voxel resolution, as it is common in volumetric

images of epithelial tissue. State-of-the-art learning-based

methods tackle these challenges using a top-down strategy,

by first training a deep neural network (DNN) to predict represen-

tations of the objects of interest (cells in our case) and then ex-

tracting individual instances from those representations using

different post-processing methods. Common representations

include cell masks or boundaries,20–23 distance or flow

maps,24–26 or a combination of some of the latter.27,28 On top

of those representations, cell instances are then calculated

usually by means of watershed29,30 or graph-partitioning

methods.31–33 Other techniques have shown success in seg-

menting cell nuclei and tracking cell lineage,34,35 but they do

not have the high level of accuracy in cell shape required to

obtain detailed geometric and topological information at the

cellular level.

Despite the benefits observed from these supervised ap-

proaches, their main drawback is the large number of annotated

samples needed to establish a training dataset and obtain reli-

able performance.36 Preparing and processing such a large

amount of datamanually or semi-automatically is usually tedious

and time expensive. This problem arises from the acquisition

time of high-resolution images as well as from the labeling of

raw images performed by experts in the field, which is usually

the main bottleneck of the protocol. To address this issue, a
2 Cell Reports Methods 3, 100597, October 23, 2023
common strategy consists in using data augmentation, i.e., syn-

thetically increasing the size of the training data by morpholog-

ical and intensity transformations or noise addition.37,38 Howev-

er, data augmentation may not be sufficient to realistically

recreate the diversity of image data to be processed. A much

less exploited alternative to speed up the segmentation protocol

would consist in the use of low-resolution images instead, which

are acquired and annotated at a considerably faster pace.

Certainly, this option would be ideal if the quality of the output

segmented cells remains comparable to that obtained with

high-resolution images.

In this article, we image, process, and analyze whole Madin-

Darby canine kidney (MDCK) 3D epithelial cell cultures.39

Despite their simplicity, these cysts have previously been used

as a suitable model system to study the establishment of cell po-

larity and cell junctions,3,40–43 epithelial morphogenesis and

physiology,44–51 and tumor progression,52–55 and for exploring

the constraints on epithelial tissue morphogenesis.56 MDCK

cysts have provided valuable insights into the study of more

complex systems, helping us to understand self-organization

in organoids, embryoids, and the early stages of mammal

development.56–58

In our approach, we use a small training dataset of high-reso-

lution images to subsequently produce a large training dataset of

low-resolution images that are automatically segmented. Our

method follows a top-down pipeline that makes use of DNN ar-

chitecture with multiple cell representations and watershed

post-processing to initially segment the epithelial cells as 3D in-

stances. These instances are refined by a second post-process-

ing step: a 3DVoronoi algorithm that provides realistic 3D epithe-

lial boundaries where cells are in close contact with each other.

The algorithm is based on tiling the space between a set of (Vor-

onoi) seeds by proximity, without leaving any gaps among the

generated compartments.59 These compartments are called

Voronoi cells. Honda showed that the Voronoi compartmentali-

zation of a 2D space, after using the cell nuclei as seeds, fitted

the pattern of cellular contacts found in epithelial surfaces.60 In

3D, this approach has been previously used to simulate the

shapes of globular cells.10 Here, it is key to increasing the quality

of our cell-segmentation results.

In short, we have developed an accessible and fast tool to

investigate the complex organization of epithelial tissues. The

production of a large number of samples with accurate seg-

mentation has opened up a new way of 3D high-content anal-

ysis. The representation of the extracted feature values in each

cell provides maps of the cysts at single-cell resolution. Given

the similarities with the practices of making and using maps,

we called our approach single-cell cartography, and named

our high-content segmentation method CartoCell. The simple

observation of these maps reveals the presence of cell

morphology patterns where cells are distributed following geo-

metric cues. These patterns illustrate how different the cells

within the same cyst really are, and how cells with similar char-

acteristics have the tendency to cluster together in specific

zones of the cysts. Importantly, the large number of processed

individual cells permits us to quantify the frequency of the pat-

terns and even to find hidden traits of organizational features

within the 3D structure of the tissue.
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RESULTS

CartoCell, a high-throughput pipeline for segmentation
of 3D epithelial cysts
The realistic analysis of whole epithelial tissues at the cell level

is a critical point to a bottom-up understanding of how tissues

self-organize during development. In this work, by means of

deep-learning and image-processing strategies, we have devel-

oped CartoCell, an automated pipeline (Figure 1) to segment and

analyze hundreds of epithelial cysts at different stages (Table S1)

with minimal human intervention. CartoCell is subdivided into

five consecutive phases.

In phase 1, a small dataset of 21 cysts, stained with cell outline

markers, was acquired at high resolution in a confocal micro-

scope (Figure 1, 8 cysts of 4 days and 13 cysts of 7 days,

STAR Methods). Next, the individual cell instances were

segmented using LimeSeg,61 STARMethods), a semi-automatic

segmentation plugin of Fiji.62 The final high-resolution label im-

ages were the output of a curation process aided by a custom

MATLAB code (STAR Methods). In particular, we implemented

a MATLAB graphic user interface to facilitate manual deletion,

insertion, fusion, and proper profiling of cell instances and lumen

segmentations (STAR Methods). The use of high-resolution im-

ages simplified and improved the accuracy of manual annota-

tions by providing a clearer visualization of the cysts and their

structures. On average, we estimate that the segmentation and

curation process took 3–5 complete working days of one person

per cyst. The high-resolution images from phase 1 provide the

accurate and realistic set of data necessary for the following

steps (see discussion).

In phase 2, both high-resolution raw and label images were

down-sampled to create our initial training dataset (Figure 1).

The logic of this step is to take advantage of lower storage

requirements and faster acquisition and processing time of

low-resolution images. Specifically, the image volumes were

reduced to match the resolution of the images acquired in phase

3 (STAR Methods). Using that dataset, a first DNN was trained.

The DNN employed was a custom stable 3D residual U-Net

(3D ResU-Net)63 (Figures 1 and S1). We will refer to this first

model as ‘‘model M1’’ (Figure 1 and STAR Methods).

In phase 3, a large number of low-resolution stacks of multiple

epithelial cysts was acquired (Figure 1). This was a key step in al-

lowing high-content analysis of samples, since it greatly reduces

the acquisition time (STARMethods). Here, we extracted the sin-

gle-layer and single-lumen cysts by cropping them from the

complete stack (Figure 1 and STARMethods). In this way we ob-

tained a set of 293 low-resolution images, composed of 84 cysts

at 4 days, 113 cysts at 7 days, and 96 cysts at 10 days (Figure S2).

Next, we applied our trained model M1 to those images and

post-processed their output to produce (1) a prediction of indi-

vidual cell instances (obtained by marker-controlled watershed)

and (2) a prediction of the mask of the full cellular regions (Fig-

ures 1 and S1; STAR Methods). At this stage, the output cell in-

stances were generally not touching each other, which is a prob-

lem when studying cell connectivity in epithelia. Therefore, we

applied a 3D Voronoi algorithm to correctly mimic the epithelial

packing.59,60 More specifically, each prediction of cell instances

was used as a Voronoi seed, while the prediction of the mask of
the cellular region defined the bounding territory that the cells

could occupy (Figures 1 and S3; STAR Methods). In previous

works, cell nuclei were used as Voronoi seeds, leading to less

reliable cell outlines, since nuclei may not be exactly located

at Voronoi centers.64 In our approach, the predicted full cell

instance masks are used as seeds, producing more accurate re-

sults, since only the inter-instance space needs to be filled by the

algorithm. The output of this phase was a large dataset of low-

resolution images and their corresponding accurate labels.

In phase 4, a new 3D ResU-Net model (‘‘model M2’’ hence-

forth) was trained on the ‘‘training low-resolution dataset,’’

composed of the newly produced large dataset of low-resolution

raw images and its paired label images, along with the ‘‘training

down-sampled dataset’’ (Figure 1 and STARMethods). This was

a crucial step, since the performance of deep-learning models is

highly dependent on the number of training samples.

In phase 5, model M2 was applied to new low-resolution cysts

and their output was post-processed as in phase 3, thus

achieving high-content segmentation of the desired cysts (Fig-

ures 1 and S2).

Optimization of the method
Once the CartoCell pipeline was defined, we performed an auto-

matic screening of parameters of the 3D ResU-Net to optimize

the quality of the prediction of models M1 and M2 (STAR

Methods). To this aim, we elaborated a test set with 60 new

low-resolution cysts (20 cysts at 4 days, 20 at 7 days, and 20

at 10 days of development) not used in any of the previous

training steps (STARMethods). These cysts were semi-automat-

ically segmented and manually curated to obtain their ground-

truth labels (STAR Methods). The parameter search for the M1

and M2 models aimed to ensure the highest quality of segmen-

tation, based on the comparison between the prediction of the

models and the ground-truth labels of the test set (Table S2

and STAR Methods). In addition, this optimization also demon-

strated that M2, a model trained with a large number of low-res-

olution images, outperformed M1, a model trained with a small

but perfectly segmented dataset (Table S3).

Performance evaluation and comparison with other
methods
To test CartoCell against current alternatives, we compared the

performance of our segmentation pipeline with that provided by

the state-of-the-art approaches StarDist 3D,25 Cellpose,26 and

PlantSeg23 (Figure S3 and STARMethods). In all cases, the small

down-sampled dataset from phase 2 was used as the training

set, and the same 60 new cysts were used as the test set

(STAR Methods). Moreover, for the sake of analyzing method

robustness and stability, each method was trained ten times

under the same conditions. Segmentation metrics were thus

provided on average over those ten repetitions (Table S3). In

summary, CartoCell compares favorably with state-of-the-art

alternatives, especially after retraining our model with the new

dataset in phase 4.

As demonstrated by the segmentation metric values of model

M1 and M2 (Table S3), one of the keys of the success of

CartoCell relies on generating a large yet imperfect training data-

set, which greatly enhances the prediction accuracy when
Cell Reports Methods 3, 100597, October 23, 2023 3



Figure 1. CartoCell pipeline for high-content epithelial cysts segmentation

Phase 1: the ‘‘high-resolution raw images’’ consist of confocal z-stack images, where the cell membrane is stained. These images are segmented and proofread

using LimeSeg and a custom MATLAB code for curation to obtain the ‘‘high-resolution label images’’ (STAR Methods). Together, the raw and the label images

encompass the ‘‘training high-resolution dataset.’’ Number of samples = 21. Phase 2: the ‘‘training high-resolution dataset’’ is down-sampled to obtain the

‘‘training down-sampled dataset,’’ which is the training set for the ‘‘model M1.’’ Phase 3: low-resolution images are obtained from confocal z-stack images,

stained in a similar way to phase 1. Number of samples = 293. Scale bar, 100 mm. Next, the ‘‘work-flow M1’’ is applied: inference using ‘‘model M1’’ and

subsequent post-processing to obtain individual cell instance predictions and cell masks, followed by the 3D Voronoi algorithm to guarantee that predicted cells

remain in close contact. As a result, the ‘‘low-resolution label images’’ are generated. Phase 4: training of the ‘‘model M2’’ on the large ‘‘training low-resolution

dataset.’’ Number of samples = 314. Phase 5: high-content segmentation of new low-resolution images (unseen by the pipeline) using the ‘‘work-flowM2,’’ which

is equivalent to the ‘‘work-flow M1’’ but using the ‘‘model M2.’’ See also Figures S1–S3; Tables S2, S3, and S4.
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training a DNN. To measure this improvement, we quantified the

number of perfectly annotated cysts that would be required in a

single phase to achieve results equivalent to those of the whole

pipeline of CartoCell. In particular, we trained our 3D ResU-Net

with 50, 100, 150, 200, and 250 perfectly annotated cysts

(STAR Methods). As a result, we observed that as many as 90

cysts would be needed to match the performance of CartoCell

with only 21 cysts as input (Figure S3).
4 Cell Reports Methods 3, 100597, October 23, 2023
Additionally, we demonstrated that other state-of-the-art

DNNs can be used in conjunction with CartoCell. By leveraging

on the long imperfect training dataset resulting from phase 2,

these methods can be integrated into CartoCell by replacing

the model M2 in phase 4 (Figure 1). In line with the findings in

our original CartoCell pipeline, the use of the new M2 models

improved the segmentation results with respect to those of

model M1 (Table S3).



(legend on next page)
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Management of results: Final curation before biological
analysis
As a result of this full process, we obtained 353 segmented cysts

(293 low-resolution from phase 3 + 60 tests). Next, with the pur-

pose of conducting a detailed quantitative analysis of 3D epithe-

lial packing, we performed a semi-automatic final curation to

correct small defects in the segmentation (Figure S3 and STAR

Methods). As an outcome, we obtained our final ground-truth

dataset, with accurate feature values that we used in the biolog-

ical analysis (Figure 2; Tables S1 and S4). On average, each

imperfect cyst took 12 ± 6 min to be curated. Thanks to our

ground-truth dataset we could compare the values of the biolog-

ical features extracted before and after the final curation step,

thus measuring their impact on the results. Nevertheless, the

user may opt for skipping this semi-manual step and keep a fully

automatic processing pipeline. In our specific case, we automat-

ically selected for analysis the cysts released after phase 5

whose epithelial monolayer was completely tiled by cells, i.e.,

without gaps produced by under-segmentation, namely, 307

‘‘closed cysts’’ out of the 353 segmented cysts (Figures 1 and

S3). The mean relative error of all the geometric features

extracted from the closed cysts was 5.6% ± 4.1%. In the case

of connectivity features, the mean relative error was larger:

13.3% ± 13.9%. (Figure S3, Table S4, STAR Methods, and

discussion).

Epithelial cysts adopt different shapes in 3D culture
The pipeline that we have developed is able to realistically recon-

struct the whole cyst and its lumen. In this way, it allowed us to

identify the real shape of the complete 3D epithelial structure.

We found that the full set of processed cysts (our ‘‘ground-truth

dataset’’) can present a high heterogeneity in terms of shape

(Figure S2). We analyzed the 3D structure of the total number

of single-lumen cysts pointing to two geometrical features:

axes lengths and solidity (a curvature index) (Figure S4 and
Figure 2. Realistic high-content 3D segmentation reveals different mo

(A) Shape classification of single-layer, single-lumen cysts. (Top) The 3D rendering

morphological cyst classification.

(B) Frequency distribution of the different cyst shapes at 4, 7, and 10 days.

(C) Schematic representation of the relation between 3D reconstructions of the cy

centroids is represented.

(D and E) Single-cell cartography of ‘‘cell height’’ feature. (D) Computer rendering o

color scale symbolizes the value of the cell height (normalized by cyst). (E) (Le

regarding the cyst centroid (considering 0� any vector contained in the xy plane o

cyst centroid, and cells located below the cyst centroid xy plane are represented w

value of cell height. 20,391 cells from 353 cysts were represented. (Right) Cell sort

0.75, 0.75–1. On top is a scatter polar diagram showing the angle and distance of c

quantification of the normalized cell height; on the bottom is a polar histogram a

(F and G) Single-cell cartography of the ‘‘apical area’’ feature. The same color co

(H–J) Cyst morphology affects the cartography of cell height at 10 days. (H) Ce

determined by the kind of cyst to which the cells belong. 8,528 cells from 116 cy

position versus cell height in 10-day ellipsoid, oblate, and prolate cysts. (J) Cell

normalized cell height <0.5 in 10-day ellipsoid, oblate, and prolate cysts. The

morphology and experiment. Data are presented as mean ± SD. *p < 0.05 (Stud

(K–M) Single-cell cartography of scutoids. (K) Computer rendering of three repres

non-scutoid cells in light gray. (L) Histogram representing the cell proportion at d

coordinate of the cyst centroid. Percentage of all cells from the 353 segmented cy

cells at different intervals of the z-position distance with respect to the z coordin

See also Figures S4–S6; Tables S1 and S5.
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STAR Methods). We considered two axes to be similar when

the difference in their lengths was inferior to 10%. According to

these considerations, we established five types of shapes

(Figures 2A and S2; STAR Methods). When the three axes of

symmetry were similar in length, cysts were classified as spheres

(4.0%).When two of the three axeswere similar, but one differed,

they were called spheroids. Moreover, spheroids were divided

into prolate (18.1%) when the different axis was the major one

and oblate when it was the minor one (34.3%). Cysts with three

axes of different lengths were classified as ellipsoids (39.9%).

Finally, we categorized cysts as presenting negative curvature

(3.7%) when solidity was less than 0.9, independently of axes

values (Figures 2A and S4; STAR Methods). We also quantified

the frequency of each type of shape in 4-, 7-, and 10-day cysts.

We found that at 4- and 7-day time points the most frequent

shape was ellipsoid, with the percentage of oblate cysts

increasing with the time of culture (Figure 2B). At 10 days there

were 37.9% ellipsoids and 44.8% oblate cysts.

Single-cell geometric analysis reveals cell morphology
patterns in the MDCK cysts
Reconstructing the 3D outlines of all the cells allowed the precise

quantification of a large number of geometrical and connectivity

characteristics (Table S1 and Figure S4). We designed a strategy

to visualize these data in twoways: 3Dmaps of the surface of the

reconstructed cysts and 2D plots that represent the position of

all the cells analyzed within the cysts (Figure 2C). We named

this approach single-cell cartography. In the case of the 3D

maps, we obtained a readout of seven cell geometric features

by plotting their normalized values using a color palette

(Figures 2D, 2F, and S4; STAR Methods). Regarding the ‘‘cell

height’’ there was a clear gradient ‘‘top to bottom,’’ with the cells

with lower values on the top of the cyst and a progressive in-

crease of their height toward the base (Figure 2D). Importantly,

detailed examination of the entire surface of the cysts revealed
rphologies and cell morphology patterns in MDCK cysts

of representative segmented cysts. (Bottom) Schematic representation of the

st and the 2D plots. The drawing shows how the position and angle of the cell

f three representative segmented cysts: front, back and bottom views. The cell

ft) Polar scatter showing the normalized distance and angle of cell centroids

f the cyst centroid; positive angles correlate with cell centroids placed over the

ith negative angles, as indicated in C), with a heatmap coloring the normalized

ing by the normalized cell height values, from left to right: 0–0.25, 0.25–0.5, 0.5–

ell centroids regarding the cyst centroid, with a heatmap coloring based on the

ccounting for the frequency of cell positions.

de and plotting properties as in (D) and (E) are used.

ll z position versus cell height (normalized per cyst). The color of the dots is

sts at 10 days were analyzed. (I) Scatterplots showing the comparison in cell z

proportion in the highlighted quadrant of normalized cell z position <0.15 and

percentage is computed with respect to the total number of cells for each

ent’s t test).

entative segmented cysts in three perspectives, showing scutoids in black and
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sts. (M) Histogram representing the cell proportion of scutoid and non-scutoid

ate of the cyst centroid. Percentage of all cells from the 353 segmented cysts.



Figure 3. CartoCell segmentation on other epithelial tissue datasets

(A–D) Hypoxia can induce cell morphology pattern changes in MDCK cysts. (A) Middle sections of top-to-bottom confocal microscopy z-stack images of

representative cysts cultured under normoxic (left) or hypoxic (1% O2) (right) conditions at 4 days. Cell contours were stained with Alexa Fluor 647 phalloidin

(legend continued on next page)

Please cite this article in press as: Andrés-San Román et al., CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns
in epithelia, Cell Reports Methods (2023), https://doi.org/10.1016/j.crmeth.2023.100597

Cell Reports Methods 3, 100597, October 23, 2023 7

Article
ll

OPEN ACCESS



Please cite this article in press as: Andrés-San Román et al., CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns
in epithelia, Cell Reports Methods (2023), https://doi.org/10.1016/j.crmeth.2023.100597

Article
ll

OPEN ACCESS
a subpattern: just in the center of the bottom region, the cells

were shorter (Figure 2D). These complex cell morphology pat-

terns were consistent among a high number of cysts and ap-

peared at different time points (Figure 2D). To confirm that the

pattern was general, we leveraged high-content analysis and

visualized the height of each cell of all processed cysts. We

plotted the ‘‘cell height’’ data (with the color code used in the

3D cysts) on a scatter polar diagram considering the angle and

radius of the cell centroids with respect to the centroid of the

whole cyst (Figure 2E). In this way, we were able to visualize

the distribution of the ‘‘cell height’’ feature in all cells, from all

cysts, at the same time. The plots confirmed the patterns

observed in the individual cysts: ‘‘shorter’’ cells (yellower colors)

were located at the top and center of the bottom of the cysts,

while ‘‘taller’’ cells (pink-purple colors) were found at the periph-

ery of the lateral and bottom part of the cysts. A similar cell

morphology pattern, although not as evident, was observed in

the distribution of ‘‘cell basal area,’’ ‘‘cell volume,’’ and ‘‘cell sur-

face area’’ values (Figure S5). Furthermore, we found a different

pattern involving the distribution of the ‘‘cell apical area’’ values

(Figures 2F and 2G). In this case, cells with a bigger apical area

were enriched on the top and at the bottom of the cysts. Mean-

while, cells with the smaller apical area were located in the mid-

dle region of the cysts. We also found neither ‘‘cell solidity’’ nor

‘‘cell aspect ratio’’ characteristic showed any pattern (Figure S5).
The cell morphology pattern of some features can
correlate with the shape of the whole cysts
Our high-content approach revealed that the MDCK cysts can

present different shapes and also intrinsic cell patterns. To test

whether the cell morphology patterns can be affected in some

way by the global shape of the cysts, we plotted the values of

the features against the position of the centroid of the cells in

the z axis of the cyst. In this way, we can quantify differences

in populations of cells between the three more abundant cate-

gories: ellipsoids, spheroids oblate, and spheroids prolate. In

the case of ‘‘cell height,’’ there was a clear and robust gradient

from ‘‘shorter’’ to ‘‘taller’’ cells, from the top toward the bottom,

on the three types of shapes analyzed (Figures 2H and 2I). How-

ever, a more detailed analysis of the bottom-left side of the

graphs (corresponding to the shorter cells in the base of the

cysts) revealed significant differences on the 10-day cysts

(Figures 2I and 2J) but not on 4-day and 7-day cysts (Figure S6,

Table S5, and STAR Methods). We also obtained differences in

the case of the ‘‘basal area’’ feature, but again only on 10-day

cysts (Figure S6 and Table S5). Conversely, we did not find dif-

ferences at any time point with the ‘‘cell apical area’’ feature (Fig-

ure S6 and Table S5). Our results suggest that the shape of the
(magenta) and anti-b-catenin antibody (green) (STAR Methods). Scale bars, 100 m

(HX, gray) cysts at 4, 7, and 10 days. Mean and SD are shown for number of cel

segmented cysts at each time point, from at least three independent experimen

sentations as Figures 2D–2G to map the feature ‘‘cell apical area’’ in hypoxic (1%

(E and F) CartoCell segmentation of mouse embryoids (E) and Drosophila egg ch

where in (E), cell contours were stained with Alexa Fluor 647 phalloidin (magenta) a

(Top right) 2D segmentation of the previous section. (Bottom left) Half projection o

3D computer rendering. Scale bars, 10 mm.

See also Figure S6; Tables S6 and S7.
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whole cyst could correlate with changes in cell morphology pat-

terns (see discussion).

The emergence of cell-packing patterns in the cysts
Motivated by the finding of cell morphology patterns in the distri-

bution of the values of cell geometric features, we examined the

presence of particular arrangements linked to the connectivity of

the cells. To this end, we obtained single-cell cartography

representations of the distribution of scutoids11 in the cysts

(Figures 2K–2M). In this case, the high heterogeneity in the num-

ber of scutoids per cyst and their distribution did not enable the

identification of any clear pattern using the 3D reconstructions of

the cysts (Figure 2K). We then plotted the total number of cells

and analyzed the distribution of their position along the x and y

axes (Figure 2L) and the z axis (Figure 2M) of the cysts. We did

not find differences in the distributions in the first case. However,

our analysis detected a significant increase of the proportion of

scutoids from top to bottom of the cysts (Figure 2M) that was

not observed in non-scutoid cells (chi-squared test) (Table S5

and STAR Methods). Our results suggest that cells pack

following self-organization patterns in the MDCK cysts.

Environmental perturbations can alter cell morphology
patterns
After finding cell morphology patterns in MDCK cysts, we

wondered whether they remained consistent when the cell-cul-

ture environment was modified. Specifically, we investigated

the impact of hypoxia ([O2] = 1%) on the architecture and orga-

nization of 3D cysts (Figure 3A and STAR Methods), since it has

been shown that hypoxia can affect cystogenesis by altering po-

larity in MDCK cell cultures65 and even inducing epithelial

branching.66 In our cultures, we found a significant reduction in

cell number and the cyst and lumen sizes throughout the whole

experimental observation period (Figure 3B and Table S6). We

then employed the single-cell cartography approach to analyze

7,729 cells from 206 segmented and curated hypoxic cysts

and compared the patterns in both normoxia and hypoxia. We

observed similar patterns in the case of ‘‘cell height’’ (compare

Figures 2D, 2E, and S6; Table S6; STAR Methods), as well as

‘‘cell basal,’’ ‘‘cell volume,’’ ‘‘cell solidity,’’ and ‘‘cell aspect ratio’’

(Table S6 and STAR Methods). However, we found a different

pattern on the distribution of the ‘‘cell apical area’’ values

(compare Figures 2F, 2G, 3C, and 3D). Under hypoxic condi-

tions, cells with the bigger apical area were enriched at the top

and bottom regions (as in normoxia), but also in the middle re-

gion of the cysts (Figure 3D, Table S6, and STAR Methods).

Furthermore, in contrast to normoxia, where significant differ-

ences in the distribution along the z axis of the cyst were found
m. (B) Quantification of cyst size in normoxic (NX, black) and hypoxic (1% O2)

ls per cyst, cyst volume, and lumen volume. Data were obtained from over 60

ts. **p % 0.05, ****p % 0.001 (Mann-Whitney U test). (C and D) Same repre-

O2) MDCK cysts. 7,729 cells from 206 segmented cysts were represented.

ambers (F). (Top left) Middle section of confocal microscopy z-stack images,

nd anti-b-catenin antibody (green) and in (F) with Resille-GFP (STARMethods).

f z-stack images with the same stains for cell contours as on top. (Bottom right)
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between scutoid and non-scutoid cells (Figure 2M), distinctions

were not observed under hypoxic conditions (Figure S6,

Table S6, and STAR Methods).

Applicability of CartoCell to other epithelial models
To assess the adaptability of CartoCell to other epithelial models

(differing in morphology and in staining protocols), we evaluated

its performance on volumetric confocal images of two different

tissues. First, we applied the complete CartoCell pipeline to a da-

taset of 323 mouse embryoids (Figure 3E), which are in vitro

models derived from embryonic stem cells58,67 (STARMethods).

Compared with the MDCK cysts, these embryoids exhibit great

variation in terms of cell shape and organization such as a

smaller lumen, apoptotic cells, and numerous reverse blebs.68

For these reasons, and despite using the same membrane

markers as for MDCK cysts, new ground-truth data were gener-

ated to feed CartoCell (STAR Methods). In this scenario, we

applied our pre-trained model M2 to generate the initial labels

for 21 embryoids. The curation of these embryoids (average cu-

ration time = 71 ± 28 min/embryoid) was performed to generate

the new training dataset. This approach allows us to achieve

rapid and high-quality labeling without the requirement for

high-resolution images, resulting in the omission of the down-

sampling step in the CartoCell pipeline (phase 2, Figure 1). These

meticulously curated embryoids constituted the training dataset

for model M1. Subsequently, model M1 was trained and used to

predict the labels of 282 new embryoids (phase 3, Figure 1). As a

result, a substantial number of embryoids with labels that exhibit

certain imperfections were obtained. These images, along with

the initial 21 embryoids, facilitated the training dataset to train

the model M2 (phase 4, Figure 1). This essential balance be-

tween a large dataset size and the presence of labels which,

while not perfect, remain reliable, culminated in the development

of a robust M2 model. To test the model M2, 20 unseen embry-

oids were inferred and semi-automatically curated using custom

software (STAR Methods) (average curation time = 61 ± 21 min/

embryoid). The comparison between the inference and the

ground truth (STAR Methods) is provided in Table S3, high-

lighting the precision of CartoCell and illustrating its ability to

handle the intricacies of this tissue in comparison to cysts while

maintaining a comparable level of accuracy (Table S3).

Second, we tested CartoCell on the well-established in vivo

model of the Drosophila follicular epithelium, which has been

widely used to study tissue organization.69,70 The follicular

epithelium is a cellular monolayer that surrounds developing oo-

cytes forming egg chambers connected to each other to form the

ovarioles located in the ovaries.71 Instead of using different

markers as in cyst experiments, we utilized only one cell mem-

brane marker (Resille-GFP; Figure 3F and STAR Methods) for

visualizing the follicular epithelium of the egg chambers at

various stages of development, ranging from early stage 2 to

late stage 7. Despite the differences from the original CartoCell

setup, we did not require a new training dataset with the egg

chamber images to infer the cell prediction from the M2 model

(STAR Methods). We also quantitatively evaluated the resulting

segmentation compared to a curated test dataset of 20 egg

chambers. The average correction time varies from 45 ±

42 min/egg chamber in early stages to 129 ± 74 min/egg cham-
ber in late stages (Table S7 and STAR Methods). These differ-

ences in the curation time were due to the increase in the cell

number along the egg chamber development, from 107.6 ±

31.5 cells at early stages to 853.8 ± 126.2 cells at late stages

(Table S7 and STAR Methods). The results obtained showed a

high level of accuracy (Table S3). These findings provide strong

support for the robustness and validity of our model, confirming

its capability to effectively address the challenges associated

with different tissue types and staining techniques.

DISCUSSION

In this work we present CartoCell, a high-content segmentation

framework which, coupled with our single-cell cartography

approach, provides new solutions for the study of 3D complex

epithelia. The combination of both tools allows the analysis of

hundreds of whole epithelial cysts at the cellular level. We depict

the values of any morphological or connectivity parameter at

cellular resolution in two ways: using heatmaps of the feature

values over 3D reconstructions of each cyst, and with 2D plots

of the feature values and the spatial distribution of all the

analyzed cells (>20,000 cells).

The generation of a large and sufficiently general training

dataset of 3D segmented epithelia is the bottleneck of high-

content analysis of epithelial 3D packing. The repositories

providing segmented 3D epithelia that could be used as a

training dataset are very few and case specific.23,72 For that

reason, CartoCell starts with the accurate annotation of a small

number of high-resolution samples (phase 1, 21 cysts, Figure 1).

Despite being time consuming, this step facilitates the interac-

tive curation process. As observed by annotation experts,

when conducting annotations from scratch it becomes much

easier to identify the actual shape of individual cells (i.e., cell

outlines) when working with high-resolution images, contrib-

uting to improved annotation quality. Only later is the reduction

of resolution possible while maintaining precision in the identi-

fication of cell outlines (phases 2 and 3, Figure 1). Importantly,

the down-sampling resolution must match that of the low-res-

olution z stacks acquired in batches of multiple cysts simulta-

neously. Here, we leverage our deep-learning approach to

carry out two main steps. First, the small down-sampled data-

set is used to train our custom DNN and subsequently infer

segmentation over hundreds of cysts. Furthermore, thanks to

the 3D Voronoi post-processing (Figures 1 and S3), the largest

proportion of the segmented cells and their outlines are realis-

tically predicted (Table S3). Although these cysts present some

small imperfections in their segmentation, they are fundamental

for the second step, consisting of retraining our DNN using

hundreds of the previously imperfect segmented cysts (also

called weak labels73; phase 4, Figure 1). The use of this high

number of cysts, despite not being perfectly segmented,

adds generality to the model, providing highly reliable results

(Table S3) even on completely newly acquired cysts (phase 5,

Figure 1).

Regarding the usability of CartoCell by the community, here

we provide an open-source, well-documented, and easy-to-

use (without programming skills) segmentation tool that can be

used for any lab immediately (see data and code availability for
Cell Reports Methods 3, 100597, October 23, 2023 9
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details and tutorials of CartoCell and single-cell cartography). In

addition, all the DNN segmentation models generated in this

work have been made publicly available. CartoCell outperforms

the state-of-the-art alternatives when our DNN model is trained

on a small low-resolution dataset (phase 2, Figure 1). The results

are substantially better when it is retrained on the larger low-res-

olution dataset produced by our own pipeline (phases 3–5, Fig-

ure 1; Table S3). In fact, it is possible to integrate other state-

of-the-art segmentation methods with CartoCell, leveraging the

benefits of training dataset augmentation by generating realistic

but imperfect labels (phases 1–3, Figure 1) and employing other

approaches only for the final training and prediction (phases 4

and 5, Figure 1), with a substantial enhancement in their segmen-

tation quality as we have shown (Table S3).

We find that the values of the features extracted from the fully

automated segmentation are very reliable when compared with

the ground-truth segmentations: only a mean relative error of

5.6% for the geometric parameters (Figure S3, Table S4, and

STAR Methods). However, the differences were larger in the

case of connectivity characteristics, suggesting that the final cu-

ration step is necessary for these types of features. Neverthe-

less, the accurate detection of the epithelial packing and con-

nectivity of the tissues is an increasingly complex task that

may require the final curation/proofreading step to obtain accu-

rate results. In that sense, the use of CartoCell crucially reduces

the proofreading time from 3–5 days to just 12 ± 6 min per cyst

(Figure S3, Table S4, and STAR Methods).

Accounting with such a large number of samples is the key to

quantifying the cell morphology patterns in these epithelial struc-

tures. We uncover two different ‘‘cell morphology’’ patterns

within the cysts (Figure 2). First, in the case of the ‘‘cell height,’’

‘‘cell basal surface,’’ ‘‘cell volume,’’ and ‘‘cell surface area’’ fea-

tures, the cells present a clear increase in the values from top to

lateral bottom. Cells with lower values then also appear in the

bottom center of the cyst (Figures 2D, 2E, and S5). A different

pattern can be easily distinguished when comparing the polar

histograms of those characteristics with that of ‘‘cell apical

area’’ (comparison between Figures 2E and 2G). In this second

case, cells with a larger apical area are distributed at the lateral

top and lateral bottom of the cysts. Importantly, we also found

features that do not show any spatial pattern on the cyst (Fig-

ure S5), suggesting that different geometric features are inde-

pendent of others. Our approach also reveals that the complexity

of the cyst can reach even the level of the packing and connec-

tivity of the cells. Here we show the example of scutoids.

Although the 3D maps of the presence of scutoids do not reveal

any clear pattern (Figure 2K), the power of the high-content

approach reveals a clear accumulation of scutoids on the bottom

side of the cysts when compared with non-scutoid cells (Fig-

ure 2M). Furthermore, our findings demonstrate that changes

in the microenvironment, such as hypoxia, have the potential

to alter cell morphology patterns (Figures 3C, 3D, and S6;

Table S6).

At the tissue level, we show that cysts can adopt a variable

range of shapes beyond being symmetric spheres56,74

(Figures 2A, 2B, and S2; Table S1). This finding reveals a degree

of complexity of the MDCK cysts that allows us to study in detail

the interplay between the shape of the whole structure and the
10 Cell Reports Methods 3, 100597, October 23, 2023
individual cell morphology. Indeed, we find that in 10-day cysts

(when the size of the cyst and the number of cells increase) it

is possible to find a correlation between some cellular geometric

patterns and the shape of the cysts (Figures 2H–2J and S6;

Table S5). Our single-cell cartography methodology demon-

strates that the first hints of asymmetry can emerge even in tis-

sues where there is no cell differentiation. Essentially, our

method sheds light on a very basic degree of variation at both

cell and global level that previously was not deeply described

in cyst cultures. Taken together, our results reinforce the useful-

ness of this simple system to study 3D morphogenesis and help

to answer complex questions such as ‘‘how do cells with

different characteristics self-organize themselves in a tridimen-

sional epithelial tissue?’’ or ‘‘are cells with different shapes phys-

iologically equivalent?’’ In addition, the extracted morphological

and connectivity cell information could be used to feed biophys-

ical models and force inference analysis,10,12,75 providing valu-

able knowledge of cell mechanics.

Our high-content analysis presents several advantages

related to the versatility and efficiency of themethod. By working

with low-resolution images, it saves time during image acquisi-

tion by allowing the capture of several samples in parallel. More-

over, it accelerates image processing (segmentation and feature

extraction) while also minimizing the storage space needed and

reducing photobleaching effects on the samples, opening the

possibility of applying CartoCell to in vivo imaged epithelia to

study tissue development and its dynamical events. In fact, our

pipeline could be combined with cell-lineage analysis methods

that use nuclei segmentation and tracking to study how different

cell lineages remodel their geometric and connectivity features

during tissue development.34,35 For other epithelial systems or

other cell membrane markers, the strategy that we present

here can be adapted. In this case, to automatically segment a

large number of low-resolution samples, the user should obtain

a new dataset of images and follow our pipeline (phase 1 to

phase 5, Figure 1). Following that premise, we challenged our

method by acquiring a large dataset of mouse embryoids and

applying the whole CartoCell segmentation pipeline on it (Fig-

ure 3E). Remarkably, although the embryoids presented very

heterogeneous morphologies, we achieved segmentation met-

rics comparable to those observed in the MDCK cysts

(Table S3). Finally, CartoCell is also able to obtain accurate re-

sults in epithelial organs such as the Drosophila egg chamber,

even when the cell membranes are labeled with a sole mem-

brane marker (Figure 3F and Table S3). The adaptability and

generalizability of our approach could offer potential solutions

to overcome several challenges in the field of organoids or tissue

engineering.76,77

CartoCell and single-cell cartography methodology can unveil

hidden patterns in a simple and visual manner, which is pivotal

to improving the study of the self-organization of complex

epithelial tissues where cells are in close contact with each

other.57,58,75,78,79 In a biomedical context, the possibility of

analyzing a very large number of samples is ideal for testing

the reproducibility of epithelial organoid cultures and performing

detailed comparisons between physiological and pathological

conditions. Furthermore, high-throughput drug testing on animal

or human epithelial organoids could take advantage of our
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approach to automatically analyze the effect of every drug

against a target disease at the cellular level.56,80,81

Limitations of the study
While the strategy presented in this work shows promise for be-

ing adapted to various epithelial systems or alternative cell mem-

brane markers, its applicability to untested epithelial models

cannot be assured. The lack of public datasets has restricted

the scope of the testing to our own epithelial models. Addition-

ally, certain factors could limit the application of this approach.

The feature values related to cell connectivity could not be very

feasible without careful manual proofreading to ensure accu-

racy. Furthermore, the effectiveness of the method may be

reduced when dealing with intricate epithelial tissues featuring

multiple layers or cells with complex shapes, such as pseudos-

tratified epithelia. Despite these limitations, the strategy’s versa-

tility remains evident, and its potential contribution to the anal-

ysis of epithelial tissues is noteworthy.
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13. Gómez-Gálvez, P., Vicente-Munuera, P., Anbari, S., Buceta, J., and Escu-

dero, L.M. (2021). The complex three-dimensional organization of epithe-

lial tissues. Development 148, dev195669. https://doi.org/10.1242/dev.

195669.

14. Lou, Y., Rupprecht, J.-F., Hiraiwa, T., and Saunders, T.E. (2022). Curva-

ture-induced cell rearrangements in biological tissues. Preprint at bioRxiv.

https://doi.org/10.1101/2022.05.18.492428.

15. Prabhakara, C., Iyer, K.S., Rao, M., Saunders, T.E., and Mayor, S. (2022).

Quantitative analysis of three-dimensional cell organisation and concen-

tration profiles within curved epithelial tissues. Preprint at bioRxiv.

https://doi.org/10.1101/2022.05.16.492131.

16. Rupprecht, J.-F., Ong, K.H., Yin, J., Huang, A., Dinh, H.-H.-Q., Singh, A.P.,

Zhang, S., Yu, W., and Saunders, T.E. (2017). Geometric constraints alter

cell arrangements within curved epithelial tissues. Mol. Biol. Cell 28, 3582–

3594. https://doi.org/10.1091/mbc.e17-01-0060.

17. Laine, R.F., Arganda-Carreras, I., Henriques, R., and Jacquemet, G.

(2021). Avoiding a replication crisis in deep-learning-based bioimage anal-

ysis. Nat. Methods 18, 1136–1144. https://doi.org/10.1038/s41592-021-

01284-3.

18. Meijering, E. (2020). A bird’s-eye view of deep learning in bioimage anal-

ysis. Comput. Struct. Biotechnol. J. 18, 2312–2325. https://doi.org/10.

1016/j.csbj.2020.08.003.

19. Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., and Van Valen, D.

(2019). Deep learning for cellular image analysis. Nat. Methods 16,

1233–1246. https://doi.org/10.1038/s41592-019-0403-1.

20. Ciresan, D., Giusti, A., Gambardella, L., and Schmidhuber, J. (2012). Deep

Neural Networks Segment Neuronal Membranes in Electron Microscopy

Images. In Advances in Neural Information Processing Systems, F. Per-

eira, C.J. Burges, L. Bottou, and K.Q. Weinberger, eds. (Curran Associ-

ates, Inc.).
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E., Lerche, M., Hernández-Pérez, S., Mattila, P.K., Karinou, E., et al.

(2021). Democratising deep learning for microscopy with ZeroCostDL4-

Mic. Nat. Commun. 12, 2276. https://doi.org/10.1038/s41467-021-

22518-0.
Cell Reports Methods 3, 100597, October 23, 2023 13

https://doi.org/10.1242/jcs.195420
https://doi.org/10.1186/1471-2121-12-43
https://doi.org/10.1186/1471-2121-12-43
https://doi.org/10.1016/j.cub.2008.02.076
https://doi.org/10.1371/journal.pone.0112922
https://doi.org/10.1371/journal.pone.0112922
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref44
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref44
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref44
https://doi.org/10.1016/j.semcdb.2022.05.015
https://doi.org/10.1016/j.semcdb.2022.05.015
https://doi.org/10.1016/j.ejcb.2007.11.004
https://doi.org/10.15252/embj.2022112662
https://doi.org/10.15252/embj.2022112662
https://doi.org/10.1038/srep14208
https://doi.org/10.1038/srep14208
https://doi.org/10.1038/nrm859
https://doi.org/10.1152/ajpcell.00261.2012
https://doi.org/10.1091/mbc.e06-11-1052
https://doi.org/10.1091/mbc.e06-11-1052
https://doi.org/10.1074/jbc.M112.377804
https://doi.org/10.1074/jbc.M112.377804
https://doi.org/10.1242/jcs.00503
https://doi.org/10.1002/1873-3468.14053
https://doi.org/10.1083/jcb.201703145
https://doi.org/10.1083/jcb.201703145
https://doi.org/10.1016/j.cels.2022.05.008
https://doi.org/10.1016/j.cels.2022.05.008
https://doi.org/10.1016/j.semcdb.2022.05.009
https://doi.org/10.1016/j.gde.2018.06.006
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref59
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref59
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref59
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref59
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref59
https://doi.org/10.1016/0022-5193(78)90315-6
https://doi.org/10.1016/0022-5193(78)90315-6
https://doi.org/10.1186/s12859-018-2471-0
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1007/s12021-021-09556-1
https://doi.org/10.1007/s12021-021-09556-1
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref64
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref64
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref64
https://doi.org/10.1242/jcs.210906
https://doi.org/10.1038/ki.2015.214
https://doi.org/10.1038/ki.2015.214
https://doi.org/10.1038/nature24675
https://doi.org/10.1038/nature24675
https://doi.org/10.1101/2023.05.03.539105
https://doi.org/10.1101/2023.05.03.539105
https://doi.org/10.7554/eLife.49050
https://doi.org/10.1016/j.mod.2017.04.002
https://doi.org/10.1016/j.mod.2017.04.002
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref71
http://refhub.elsevier.com/S2667-2375(23)00249-7/sref71
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0


Please cite this article in press as: Andrés-San Román et al., CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns
in epithelia, Cell Reports Methods (2023), https://doi.org/10.1016/j.crmeth.2023.100597

Article
ll

OPEN ACCESS
73. Shrestha, P., Kuang, N., and Yu, J. (2023). Efficient end-to-end learning for

cell segmentation with machine generated weak annotations. Commun.

Biol. 6, 232. https://doi.org/10.1038/s42003-023-04608-5.

74. Cerruti, B., Puliafito, A., Shewan, A.M., Yu, W., Combes, A.N., Little, M.H.,

Chianale, F., Primo, L., Serini, G., Mostov, K.E., et al. (2013). Polarity, cell

division, and out-of-equilibrium dynamics control the growth of epithelial

structures. J. Cell Biol. 203, 359–372. https://doi.org/10.1083/jcb.

201305044.

75. Dahl-Jensen, S., and Grapin-Botton, A. (2017). The physics of organoids:

a biophysical approach to understanding organogenesis. Development

144, 946–951. https://doi.org/10.1242/dev.143693.

76. Laurent, J., Blin, G., Chatelain, F., Vanneaux, V., Fuchs, A., Larghero, J.,
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

MDCK cyst cell culture
Type II MDCK (Madin-Darby canine kidney) cells weremaintained inminimum essential medium (MEM) containing GlutaMAX (Gibco)

and supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 mg/mL streptomycin, in a 5%CO2 humidified incu-

bator at 37�C. For cyst formation, MDCK cells (2500 cells/well) were suspended in a completemedium containing 2%Matrigel (Corn-

ing, Life Sciences). Cell suspension was plated in a 4-well culture slide (Corning, Life Science) on a thin layer coating of 100% Ma-

trigel. The plates were kept at 37�C in a humidified atmosphere of 5% CO2 for 4, 7 or 10 days and the medium was changed every

2 days.

The cysts under hypoxia conditions ([O2] = 1%) were maintained in incubators that allowed a precise and stable control of temper-

ature, as well as O2 and CO2 concentrations. The exposure times to hypoxia were 4, 7, or 10 days, and the medium was changed

every 2 days.

Drosophila egg chambers
For Drosophila ovary in vivo model, we used Resille-GFP (II) transgenic flies expressing a membrane marker tagged with the green

fluorescence protein (GFP) ubiquitously to visualize the follicle cells of the egg chambers that compose the ovaries.83Drosophila egg

chambers progress through 14 morphologically distinct stages of development. For in vivo acquisition, 1-2-day-old females were

kept in a new food vial with yeast for optimal ovary development for 48 h. The ovaries were dissected in M3 insect culture medium

(S83981L, Sigma) supplemented with 10% FBS (10270106; Gibco) and 0.20 mg/mL insulin (I550050G; Sigma). Ovarioles were iso-

lated by removing the muscle sheath covering the ovary to avoid contraction movements during image acquisition. The ovarioles

from different ovaries weremounted in a glass-based dish (Thermo Fisher Scientific), covered with supplementedmedium to prevent

the evaporation during in vivo acquisition. We obtained and processed confocal stacks from stage 2 to stage 7 egg chambers (20 egg

chambers analyzed, Table S7). It should be noted that we distinguished between the early stages 2–3 (with an average cell count of

107.6 ± 31.5), middle stages 4–5 (315.5 ± 103.6 cells/egg chamber) and late stages 6–7 (853.8 ± 126.2 cells/egg chamber) (Table S7).

Mouse embryoids
mES cell derivation

For WTmouse embryonic stem (mES) cell derivation, eight-cell stage mouse embryos were recovered from the oviducts of pregnant

females and cultured in KSOM (MR-020P-5F, Millipore) containing the inhibitors 2i/LIF to preserve naive pluripotency: 1mMMEK in-

hibitor PD0325901 (72182, STEMCELL Technologies), 3mM GSK3 inhibitor CHIR99021 (72052, STEMCELL Technologies) and

10 ngml�1 LIF (Qk019, Qkine). After 24h, the medium was changed to N2B27 medium with 2i/LIF for 48h. N2B27 medium was

comprised of a 1:1 mix of DMEM F12 (21331-020, Thermo Fisher Scientific) and neurobasal A (10888-022, Thermo Fisher Scientific)

supplemented with 1% v/v B27 (10889-038, Thermo Fisher Scientific), 0.5% v/v N2 (homemade), 100mM b-mercaptoethanol (31350-

010, Thermo Fisher Scientific), penicillin–streptomycin (15140122, Thermo Fisher Scientific) and GlutaMAX (35050061, Thermo

Fisher Scientific). Hatched blastocysts were next plated on mitomycin C-treated MEFs in Fc medium containing DMEM (41966,

Thermo Fisher Scientific), 15% FBS (Stem Cell Institute), penicillin–streptomycin (15140122, Thermo Fisher Scientific), GlutaMAX

(35050061, Thermo Fisher Scientific), MEM non-essential amino acids (11140035, Thermo Fisher Scientific), sodium pyruvate

(11360070, Thermo Fisher Scientific) and 100mM b-mercaptoethanol (31350-010, Thermo Fisher Scientific. 2i/LIF was also added

to Fc medium. Two days later, blastocysts outgrowths were trypsinized and plated to obtain mES cell colonies.

mES cell culture

mES cells were routinely cultured in gelatin-coated plates in Fc medium supplemented with 2i/LIF at 37�C, 5% CO2, 21% O2. Cells

were routinely tested for mycoplasma contamination. For embryoid formation, mES cells (20,000 cells/well) were suspended in a

complete medium containing 5% Matrigel (Corning, Life Sciences). Cell suspension was plated in an 8-well culture slide (Corning,

Life Science) on a thin layer coating of 100% Matrigel. The plates were kept at 37�C in a humidified atmosphere of 5% CO2 for

72h and the medium was changed every 2 days.

Immunostaining and confocal imaging
Cysts grown on 4-well chamber slides (Corning, Life Science) were fixed with 4% paraformaldehyde in PBS and permeabilized with

0.5% Triton X-100 in Dubelcco’s Phosphate Buffered Saline (DPBS, Sigma-Aldrich) for 15min at room temperature (RT). After block-

ing with a solution of 0.02% Saponin (Sigma) and 3% BSA (Applichem) in DPBS for 2h at RT, cysts were incubated overnight at 4�C
with anti-b-catenin antibody (1:1000 in DPBS-0.02% Saponin-3% BSA; rabbit, Sigma-Aldrich). The following day, the cysts were

washed with DPBS-0.02% Saponin-3% BSA solution (3x, 5 min each) and incubated for 90 min at RT in this solution plus anti-rabbit

conjugated to Alexa Fluor 488 (1:800, Thermo Fisher Scientific) and phalloidin-Alexa-Fluor 647 (0.08 mM, Thermo Fisher Scientific).
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After washing with DPBS, plastic chambers were removed from microscope slides and coverslips were mounted onto slides using

Fluoromount-G mounting solution (SouthernBiotech).

Cysts were imaged using a Nikon Eclipse Ti-E laser scanning confocal microscope. High-resolution z stack confocal images were

captured using a dry 340 objective (0.95 NA) and variable zoom (3.5–5.5), with a step size of 0.5 mm per slice and a scan speed of

0.25 ms, from top to bottom. Then, they were exported as nd2 files with an XY resolution ranging between 0.06 and 0.08 mmper pixel

and an image size of 10243 1024 pixels. Low resolution images were captured (from top to bottom) using320 oil objective (0.75 NA),

step size of 0.7 mm per slice, scan speed of 0.5 ms and exported as nd2 files with an XY resolution of 0.62 mm per pixel and an image

size of 1024 3 1024 pixels.

Drosophila egg chambers, images were acquired using a Leica Stellaris 8 FALCON Confocal microscope at 25�C, with325 water

objective (0.95 NA). The whole ovarioles were captured with a resolution of (0.61 mm per pixel in XY and 1.02 mm between Z slices,

using the optimal z-step size. Laser compensation was applied to maintain similar levels of GFP intensity along the z axis.

Embryoids grown on 8-well chamber slides (Corning, Life Science) were fixed with 4% paraformaldehyde in PBS and permeabi-

lized with PBS +0.2% Triton Tx-100 + 0.2% SDS for 10 min at RT. After blocking with a solution of PBS +3% BSA for 2h at RT, cysts

were incubated overnight at 4�C with anti-b-catenin antibody (1:1000 in 3% BSA; rabbit, Santacruz). The following day, the cysts

were washed three times with PBS and incubated for 120 min at RT in PBS +3% BSA with Alexa Fluor 488 anti-Rabbit (1:1000,

Thermo Fisher Scientific), Alexa Fluor 555 Phalloidin (1:1000, Thermo Fisher Scientific) and DAPI (1:2000, Sigma-Aldrich). Cysts

were imaged using a Nikon Eclipse Ti-E laser scanning confocal microscope. Low resolution images were captured (from top to bot-

tom) using320 oil objective (0.75 NA), step size of 0.7 mm per slice, scan speed of 0.5 ms and exported as nd2 files with an XY res-

olution of 0.62 mm per pixel and an image size of 1024 3 1024 pixels.

METHOD DETAILS

Custom DNN architecture: 3D ResU-Net
Building upon the state of the art, we have designed 3D ResU-Net, a stable 3D residual U-Net63 to segment epithelial cysts at the cell

level. The architecture is presented in Figure S1. More specifically, 3D ResU-Net is formed by full pre-activation residual blocks (two

3 3 3 convolutional layers with a shortcut as shown in Figure S1), with 52 filters in the first level and adding 16 more at each level,

dropout of 0.1 at each block. Down-sampling (max-pooling) operators are performed only in 2D, since the input volumes are aniso-

tropic. The total number of trainable parameters is 1.3M.

The network received raw cyst images as input and outputs three different channels: i) cell masks, with the probability that a voxel

belongs to an individual cell, ii) contour, containing the probabilities of cell outlines, and iii) cell region, representing the foreground

probability of the complete cyst.

Network optimization
To find the best solutions with our custom 3D ResU-Net, we made an exhaustive search of hyperparameters (Table S2) and training

configurations, exploring different loss functions, optimizers, learning rates, batch sizes, and data augmentation techniques. In

particular, we minimized the binary cross-entropy (BCE) loss using the Adam optimizer, with a learning rate of 0.0001, a batch

size value of 2 and using a patch size of 803 80380 voxels. We used a Tesla P40 GPU card to train the network until convergence,

i.e., for 1300 epochs with a patience established at 50 epochs monitoring the validation loss and picking up the model that performs

best in the validation set (2 samples of ‘‘training high-resolution dataset’’ were used for model M1 and model M2 validation). More-

over, we applied on-the-fly data augmentation with random rotations, vertical, horizontal and z axis flips and brightness distortions.

Image preprocessing
Before accessing the network, all raw images were preprocessed for contrast homogenization using Fiji62 macros. In this prepro-

cessing, a contrast adjustment was performed using the ’enhance contrast’ function with 0.3% of saturated pixels. Additionally,

an 8-bit transformation is applied to them.

In the case of high-resolution images, a down-sampling was applied using Fiji macros, transforming the variable images resolu-

tions (0.06–0.08 mm per pixel in XY and 0.5 mm between Z slices) to have the pixel size of the low-resolution images (0.62 mm per

pixel in XY and 0.7 mmbetween Z slices). This was done by calculating a correction factor that multiplies the size of the original image:

½newSizeX ; newSizeY ;newSizeZ �/
�
SizeX $

�
lowResXY
highResXY

�
;SizeY $

�
lowResXY
highResXY

�
;SizeZ $

�
lowResZ
highResZ

��

Both preprocessing Fiji macros are available at the public repository of the laboratory (see data and code availability section). Note

that for label down-sampling the resize command ‘‘Size’’ must have the interpolation method set as ‘‘None’’ and the option of

‘‘average when down-sampling’’ disabled. For raw images, however, the interpolation method should be set as ‘‘Bilinear’’ and the

option of ‘‘average when down-sampling’’ ticked. In the case of the low-resolution images, before applying the aforementioned auto-

matic contrast enhancement process, a manual preprocessing was performed in which each cyst was cropped. This procedure was

carried out with Fiji by drawing the region of interest (ROI) using the "rectangle" tool and cropping using the "Crop" or "Duplicate"

command.
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Inference and postprocessing
Each patch of 803 80380 voxels was processed by the network to reconstruct the output to the original cyst image size applying a

padding of 163 163 16. In this way, we avoided border effects on every patch, as reported in.63 The DNN produced three different

outputs representing the probabilities of the individual cell masks, contours and the whole cell region. We binarized the first two out-

puts based on a fixed set of threshold values (0.2 was experimentally found to work best) and created instance seeds to be fed to a

marker-controlled watershed algorithm.

As a final post-processing step, we ran the Voronoi algorithm along the three dimensions, using the resulting instances of the

watershed algorithm as Voronoi seeds, and the cell region output (binarized using Otsu thresholding,84 as the bounded region to

be occupied by Voronoi cells (Figure S3). Thus, the unoccupied intercellular space of the cell region was filled by the nearest indi-

vidual cells (Voronoi seeds).

Training and test datasets acquisition
‘‘High-resolution label images’’ were obtained after segmentation of the ‘‘high-resolution raw images’’ (21 cysts) using LimeSeg,61 a

plugin of Fiji62 for 3D segmentation, based on surface elements (‘‘Surfels’’). This software was sourced from a set of seeds, manually

placed over the volumetric image to localize every single cell. These seeds grow until the cell outlines are identified by detection of

intensity gradient changes. The output of LimeSegwas processed using an in-houseMATLAB program (2021aMathWorks) to detect

and curate imperfections during cysts segmentation (see proofreading of segmented cysts section). A down-sampled version of

these 21 segmented cysts (see images preprocessing section) was used for training the model M1 (Phase 2, Figure 1): 19 cysts

composing the training dataset, and the remaining 2, making up the validation dataset.

After running by default our high-content pipeline, we used the trained model M2 (Phase 5, Figure 1) to infer and subsequently

segment the ‘‘test raw images’’ (60 cysts acquired at low resolution). These segmented images were manually curated using our

in-house MATLAB proofreading program, obtaining the ‘‘test label images’’.

Proofreading of segmented cysts
A custom program developed in MATLAB and available in the public repository of the laboratory (see data and code availability sec-

tion) was designed for the proofreading of segmented cysts. The software includes a user-friendly graphical user interface (GUI) that

allows to remove, modify, merge or create labels by drawing on the two-dimensional slices of the image stack, also allowing the inter-

polation between labels on different slices for faster curations. Both cell and lumen labels can be modified using the GUI, which also

has specific tools for each of them to ensure a proper visualization. In view that our biological study was developed on single-layer

and single-lumen cysts, the proofreading software relies on a segmentation error detection tool specific to our purpose. The GUI dis-

plays the cell IDs of cells that do not contact the apical and/or basal surface of the cyst.

The software was designed to work quickly on batches of cysts. Once the cyst stops displaying errors in the GUI and is marked by

the user as fixed, the next cyst will be displayed in the GUI to be corrected.

The procedure we carried out for the cyst curation started with the creation of 3 folders: One of them containing the batch of labels

predicted by our pipeline, another one, the batch of raw images and a third one reserved for the curated labels. The software merges

the raw images and the labels, and displays the result in a GUI along with information on possible segmentation errors. An expert

reviewed the displayed image by carefully comparing each label with the staining of the cell membrane of the raw image, and adjust-

ing the labels until a perfect segmentation was achieved.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison with the state of the art
Three state-of-the-art methods were tested against our protocol, being these methods PlantSeg,23 Cellpose (Stringer et al., 2021)

and StarDist 3D.25 For a more robust comparison, each one of the methods were trained 10 times using default configuration values,

and the 21 low-resolution cysts used to train our model M1 (Phase 2, Figure 1) were inputted as training dataset. Each of the trained

models was evaluated on the same test set, composed by 60 perfectly annotated cysts, to obtain measures of the error in the results

yielding the table (Table S3).

The training of Cellpose was conducted locally by using a GPU (Graphics Processing Unit) and not using a pretrainedmodel, as per

the instructions provided in the training documentation (https://cellpose.readthedocs.io/en/latest/train.html). Inference was per-

formed by following the instructions given in the command line documentation (https://cellpose.readthedocs.io/en/latest/

command.html) and using the diameter suggested by the Cellpose GUI.

StarDist 3D training was performed in Google Colab using the official ZeroCostDL4Mic72 implementation (https://github.com/

HenriquesLab/ZeroCostDL4Mic/wiki) using default values except for the following parameters: patch size, which was changed to

48 and patch height, which was changed to 32 for convenience given the size of the images to be used.

PlantSeg trainingwas performed locally following the training documentation instructions (https://github.com/hci-unihd/plant-seg)

using as default configuration the 3D U-Net example for confocal imaging (https://github.com/wolny/pytorch-3dunet/blob/master/

resources/3DUnet_confocal_boundary/train_config.yml) replacing patch size to [32, 64, 64] as [z, x, y] for convenience given the size

of the images used and the minimum values allowed by PlantSeg. Further to the training of the network, the PlantSeg GUI has
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modifiable parameters for the postprocessing. This part was performed in a custom way trying to optimize the watershed (done with

Simple ITK) output obtained from the probability maps predicted by the network. The parameters used were: Under-/Over- Segmen-

tation Factor = 0.75, Run Watershed 2D = False, CNN Prediction Threshold = 0.113, Watershed Seeds Sigma = 1.0, Watershed

Boundary Sigma = 0.4, Superpixels Minimum Size = 1, Cell Minimum Size = 5.

These three methods with identical training configurations as previously described, have also been evaluated after training them

with the same 314 cysts used for training M2 model (Phase 4, Figure 1). To ensure a robust comparison, ten models were trained for

each method.

Cyst features and shape classification
Using an in-house MATLAB code, we quantified a set of geometrical and topological parameters of the segmented epithelial cysts

(Table S1) as is graphically described in Figure S4. We carried out a classification of cysts depending on the morphology and differ-

ences between axes lengths (Figure 2A). We considered that two axes lengths were different if they differedmore than 10%.We clas-

sified all cysts into 5 groups: 1. Sphere, when the lengths of the three axes of symmetry were similar. 2. Oblate, when two axes lengths

were similar and the different one was the shortest axis length. 3. Prolate, when two axes lengths were similar and the different one

was the longest axis length. 4. Ellipsoid, when the three axes lengths were different. 5. Negative curvature, when the solidity (volume/

convex volume) of the cyst was inferior to 0.9.

Error evaluation of biological features
We extracted the features of both manually curated cysts (ground-truth) and the output of our high-content segmentation pipeline

(without proofreading). Some of the segmented cysts without curation presented under-segmentation that promoted gaps in the

segmented tissue. This defective segmentation was called "cyst opening". These gaps prevented the identification of the lumen

of the ‘‘open cysts’’ automatically, and thus some biological features could not be extracted. The 13% (46 cysts) of the automatically

segmented cysts presented this defect, and they were not used in the comparison of the biological features values (Figure S3). For

the remaining 87% of cysts (307 cysts), features were automatically extracted and compared with the features extracted frommanu-

ally curated cysts.

For each cyst, measurements of every feature were compared by computing the relative error calculated as relative error =
jpredicted�groundtruthj

groundtruth . In the particular case of percentage of scutoids, we could not calculate the relative error because in some cases

this feature represented a 0%, resulting in indetermination. Therefore, for the calculation of its relative error, we defined the comple-

mentary of this feature (100% - percentage of scutoids) such that we did not find any cyst with the 100% of cells being scutoids.

Finally, we calculated the mean and standard deviation of the errors for every feature (Table S4).

Single-cell cartography representation
We performed an analysis of the spatial distribution of features from more than 20,000 cells from 353 segmented cysts using our

Single-cell Cartography tools available in the public repository of the laboratory (see data and code availability section). Different

types of representations arose from the use of these tools.

Computer rendering of 3D cysts

We displayed a 3D visualization of the segmented cysts and, using a gradient of color over the cell surfaces (Figures 2D, 2F, 2K, 3C,

and S6).We can plot the normalized value of individual cell features, using our customMATLAB function Paint3D. A batch processing

of cysts allowed the creation of large sheets with the previously described three-dimensional representations of cysts on which to

perform a visual pattern analysis.

Polar plots

We used two types of two-dimensional polar plots. Polar scatterplots and polar histograms were used to represent the relative

spatial position (Figure 2C) and frequencies of a normalized cell feature for all cells of all cysts simultaneously (Figures 2E, 2G,

3D, S5, and S6). For the creation of these two-dimensional polar plots (both polar scatterplot and polar histograms) we pro-

ceeded as follows: The polar coordinate center for each cyst was set at the centroid of the cyst. The radius was normalized

from 0 to 1, being 1 the distance to the farthest cell centroid from the centroid of the cyst. The colatitude angle (representing

the height on the vertical axis) was calculated with respect to the horizontal plane passing through the cyst at the centroid, thus

having positive angles for cells above the cyst centroid and negative angles for cells below the cyst (Figure 2C). The azimuthal

angle (which rotates around the vertical axis) was ignored since the scope of the study was to search for patterns along the

vertical axis. Disregarding this angle led to a two-dimensional representation. This approach consisted of 5 polar scatterplots

and 4 polar histogram plots. First, a general polar scatterplot was shown in which all cells were represented (Figures 2E, 2G, 3D,

S5, and S6). The value of the features was represented by a color gradient as in the previous case. The rest of the plots

were dedicated to different ranges of the normalized feature to be studied: 0–0.25, 0.25–0.50, 0.50–0.75, 0.75–1. Each of

the ranges was analyzed with a polar scatterplot and a polar histogram plot showing, normalized, the distribution of cells along

the colatitude. In this way, we were able to visualize all the values of a particular cell feature distributed along the cysts verti-

cal axis.
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Normalized cell spatial data

For each cell, the following data were represented: the Z-position of the cell centroid with respect to the centroid of the lowest cell in

the cyst (Figures 2H, 2I, 2M, and S6); the distance from the cell centroid to the vertical (Z) axis passing through the centroid of the cyst

(Figures 2L and S6) and the value of the cellular characteristic to be studied regarding its spatial position (Figures 2H, 2I, and S6). The

cell features were normalized regarding the maximum and minimum value of the feature in the whole cyst.

Evaluation metrics
To evaluate our results, we used common metrics to measure instance segmentation performance in 2D and 3D images, which are

calculated by matching the ground-truth and prediction segmentation masks with an Intersection Over Union (IoU) value over a

certain threshold. In particular, we show values that require at least 30%, 50% and 75% IoU with the ground-truth for a detection

to be a true positive (TP) (Table S3). More specifically, we used the following metrics:

Precision, defined as

precision =
TP

TP+FP

where TP and FP are the number of true and false positives, respectively.

Recall, defined as

recall =
TP

TP+FN

where FN is the number of false negatives.

Accuracy, defined as

accuracy =
TP

TP+FP+FN

F1 or F-score, defined as

F1 =
23precision3 recall

precision+recall

Panoptic quality, a unified metric to express both segmentation and recognition quality, defined as in Equation 1 of85

panoptic =
Sðp;gÞeTPIoUðp;gÞ
jTPj+1

2
jFPj+1

2
jFNj

where p and g are the predicted and ground-truth segments, respectively. Therefore, 1
jTPj

P
ðp;gÞeTP

IoUðp; gÞ is the average of matched

segments, and 1
2 jFPj+ 1

2 jFNj in the denominator penalizes segments without matches.

Statistical analysis
At each time-point sampled (4 days, 7 days and 10 days cysts), at least seven independent cultures were carried out for normoxic

cysts, and three independent cultures under for hypoxic cysts. For comparisons of the features values on certain cell populations

between different categories of cyst shapes, as well as to compare some features between hypoxic and normoxic cysts, we used

a univariate statistical protocol. First, samples were evaluated for normal distribution and similar variance by using the Shapiro-

Wilk test and the two-sample F-test, respectively. If samples followed a normal distribution and similar variance, we employed

the two unpaired Student’s t test; whereas data had a normal distribution but not equal variance, we used the two-tailed Welch

test. Finally, when data not adjusting to a normal distribution, we employed the non-parametric Mann-WhitneyU test. Data were rep-

resented in a bar graph as mean ± SD (standard deviation) and p% 0.05 was considered statistically significant (Figures 2J, 3B, and

S6). ‘‘*’’, ‘‘**’’, ‘‘***’’ and ‘‘****’’ indicating p% 0.05, p% 0.01, p% 0.001 and p% 0.0001 respectively (Tables S5 and S6). In a different

statistical analysis, we tested cell spatial distribution similarity frombottom to top (in z axis) or fromcyst centroid to outside (in XY axis)

of in the proportion of scutoids and non-scutoidal cells (Figures 2L, 2M, and S6; Tables S5 and S6). Similarly, we also compared the

similarity in the spatial distribution of cells, ranging from a colatitude angle of �90 to 90, between normoxic and hypoxic cysts

regarding the proportion of cells within each range of values of the normalized feature (Figures 2, 3, S5, and S6). Following the guide-

lines from,12,86 we used the chi-square test for the trend across all samples to determine if there is a linear trend for the proportional

data, considering statistically significant p % 0.05 (Tables S5 and S6). ‘‘*’’, ‘‘**’’, ‘‘***’’ and ‘‘****’’ indicating p % 0.05, p % 0.01, p %

0.001 and p% 0.0001, respectively. Statistical analyzes and graphs were performed usingGraphPad Prism version 8.4.2. (GraphPad

Software, La Jolla California, USA, www.graphpad.com).
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